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The creep rupture time of polypropylene (PP) was modelled successfully using the Reiner-Weissenberg 
energy criterion with a mechanical model. The computational aspects were discussed with respect to the 
software routine used, the equation relating time to rupture and stress, and the various problems associated 
with non-linear regression analysis for parameters optimization. The predicted upper stress limit for PP 
homopolymer and copolymer was 30 and 24 MPa, respectively. The predicted lower stress limit was 10 MPa 
and was independent of polymer type. Short term results can only be used to predict the stress limits if 
reasonable bounds were imposed on all the parameters. The above approach also predicted reasonable 
values for the resilience of polypropylene. 
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INTRODUCTION 

Previously an approach which was used to model 
accurately the creep rupture time of a high density 
polyethylene was reported 1. The model predicted the 
upper stress limit where the specimen ruptures immedi- 
ately on application of load, and the lower stress limit 
where, although the specimen creeps it sustains the load 
indefinitely. Such an approach also modelled accurately 
the creep rupture time of wood-polymer composites 2. 

The creep rupture model is based on Reiner- 
Weissenberg energy failure criterion 3 in conjunction with 
a simple three element mechanical model (Figure 1) 
having a linear elastic (Hookean) spring with modulus 
Eo in series with a parallel arrangement of a rate-activated 
(Eyring fluid) dashpot and another Hookean spring with 
modulus E a. This parallel arrangement gives anelasticity 
to the model. The Reiner-Weissenberg theory assumes 
that failure depends upon a maximum value of the 
intrinsic free energy which can be stored elastically in the 
volume of a material. Failure will occur when the 
conserved work (We) in the elastic elements reaches a 
critical value R which is the resilience of the material. 
From thermodynamics, the conserved work is equal to 
the difference between the input (W) and the dissipated 
(D) work. The sum of their difference with respect to time 
can be expressed as Wo + D - - W = 0 ;  hence, the Reiner- 
Weissenberg failure criterion can be stated as 

fo We= (I'V-/}) dt = R 

where tf is the time to failure. This equation shows that 
failure depends upon the loading history. The first 
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verification of the Reiner-Weissenberg theory of strength 
was perfolxned by Foux and Briiller 4 on the limit of 
linear viscoelastic behaviour of perspex and epoxy resin. 
They found that the resilience values of the two materials 
were independent of strain rates thus confirming the 
above theory. For prediction of crazes or fracture a 
modified version relating only to the energy associated 
with viscous flow process in polymers was found to be 
most appropriate 5. 

Applying the Reiner-Weissenberg failure criterion to 
simple mechanical models such as the Kelvin and 
Maxwell models under constant load gives the following 
interesting conclusions 3. A Kelvin solid fails when the 
strain reaches a critical limiting value and a Maxwell solid 
fails when the stress reaches a critical limiting value. 

When applied to the model as shown in Figure I under 
creep conditions different critical stress limits can be 
obtained. These limits relate to the upper and lower stress 
limits, as derived in previous publications 1'2. It is 
important to note that this model does not exhibit 
permanent plastic deformation. However, this model can 
still be used for creep rupture prediction on the assumption 
that failure is defined as the onset of permanent plastic 
deformation. 

To date no related published work, apart from those 
mentioned, on application of this approach to other 
polymers has been reported. Communications with those 
who tried, indicated that the primary problem lies in the 
computational aspects in the equation which was used 
to model the creep rupture time. The present paper 
addresses this point by first examining the model 
equation critically and establishes a subroutine program 
based on commercial software packages that could help 
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Figure 1 A simple three element mechanical model 
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researchers in similar fields to obtain quick, easy and 
consistent results. It extends the above approach to 
another polymer namely polypropylene, investigating the 
significance of the lower stress limit which is the most 
important for engineering design and the possibility 
of using short term creep rupture results to predict 
the stress limits. Computed values for the resilience of 
polypropylene are also discussed. 

EQUATION FOR MODELLING CREEP RUPTURE 

Basically the equation for creep rupture modelling is 
expressed as: 

tr = [1/(EaBK)][ln (tanh (Baap/2)tanh (BH/2 ))] (1) 

where 

H = a=p- [2Ea(R - a2~v/E=)] 1/2 

trap=applied stress; E==elastic modulus; Ea=anelastic 
modulus; B=parameter related to activation volume; 
K=parameter  related to activation energy, and R =  
resilience. For the sake of continuity and clarity the 
derivation of equation (I) is shown in Appendix A. 

Equation (1) has two important consequences. It 
predicts the upper stress (SX) at which the specimen 
ruptures immediately on application of load. It can be 
seen that t~ approaches zero if ~ap=(EeR) 1/2. Conse- 
quently one can write 

S X  = (E~R) 1/2 (2) 

It also predicts the lower stress limit (SN) at which the 
specimen sustains the load indefinitely. It can be seen 
that tr approaches infinity if trap = [R/(1/E= + 1/2Ea)] 1/2. 
In terms of SN, one can write 

SN = [R/(1/E~ + 1/2Ea) ] 1/2 (3) 

It is noteworthy to mention that S X  is only dependent 
on the elastic modulus, E~, and the resilience, R which 
is the critical sum of the elastic stored energy. SN is 
dependent on Ee, R, and the anelastic modulus, E a which 
is related to the elastic spring that brings about the 
time-dependent component of the material. Interestingly, 
both these parameters are not related to the activation 
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volume parameter, B, and the activation parameter, K. 
B and K play a major role only in modelling the creep 
rupture time. Now it appears that one needs five 
parameters: Ee, E=, B, K and R, to describe accurately 
equation (1). However this can be reduced. Using 
equations (2) and (3), H can be written in terms of SN 
and SX as: 

n = trap - -  S N [ ( S X  2 - -  a 2 p ) / ( S X  2 - -  SN2) "] 1/2 

Thus equation (1) becomes 

tr = [1/(CB) In [tanh (Baap/2)/tanh (BH/2)] (4) 

where C = EaK. 
Equation (4) suggests only four parameters for model- 

ling t r. The four parameters are SX), SN, B and C. The 
reduction of one parameter great~ reduces computing 
time during parameter optimization. 

Using equations (2) and (3) also yields 

E J E  a = 2(SX 2 - SN 2)/SN 2 (5) 

which gives the ratio of the elastic and anelastic modulus 
as a function of the upper and lower stress limits. 
Equation (5) dictates that, at the present moment, only 
the ratio Ee/Ea can be obtained. Individual values of 
Ee and E a reported earlier 1'2 are therefore subject 
to speculation. With regard to the computation of the 
four parameters used in this model some difficulty is 
encountered. Primarily, this is due to the non-linear 
relationship as expressed in equation (4), between creep 
rupture time and the four parameters. As a result the 
computer optimization program is highly dependent on 
the initial estimates of the parameters. This sometimes 
leads to numerical values of the parameters that do not 
have physical meaning. Moreover, the choice of a 
computer software program to perform the non-linear 
regression analysis is also found to be critical. The wrong 
choice of program and improper programming algorithms 
can lead to non-convergence, excessive computing time 
and poor parameter estimates. 

Statistical computation 
A number of commercial software packages are 

available to carry out non-linear regression analysis, for 
example the International Mathematical and Statistical 
Library (IMSL) ZXSSQ 6 and the Statistical Analysis 
System (SAS) NLIN 7. Both these packages can run on 
an IBM mainframe. The IMSL ZXSSQ routine is a finite 
difference, Levenberg-Marquardt routine for solving 
non-linear least squares problems TM. This routine is 
based on a modification of the Levenberg-Marquardt 
algorithm which eliminates the need for explicit deriv- 
atives. On the other hand the SAS NLIN implements 
iterative methods that attempt to find the least squares 
estimates of the parameters for non-linear models. This 
routine has four options available namely the Gauss- 
Newton s, Marquardt t 1, Steepest Descent 12 and Secant 13 
method. The advantage of SAS NLIN is that it performs 
an initial grid search of the parameters and uses the best 
set for the initial trial estimates. This eliminates a 
significant amount of time in obtaining initial estimates 
of the parameters by trial and error method. Because of 
this, the SAS NLIN routine is preferred for use in the 
above approach for creep rupture modelling. It is also 
found that for most consistent results, the Marquardt ~1 
option in SAS NLIN is the best. The Marquardt method 
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is a compromise between the Gauss-Newton and Steepest 
Descent method. It has been proven to be very reliable 
in practice and in several cases faster than other 
methods 9. It is equivalent to performing a series of ridge 
regressions and is most useful when the parameter 
estimates are highly correlated 14. 

EXPERIMENT 

Creep rupture testin9 
The details for creep rupture testing have been 

described previously 1. All tests were performed under 
constant temperature of 20+ I°C and relative humidity 
of 65_ 5 %. Dead weights were hung on to specimens in 
a uniaxial direction with the help of a hydraulic jack. 
The creep rupture time was automatically recorded by a 
clock timer. The duration of the tests varied from a few 
seconds to more than three years. If the specimen did 
not break, the time taken for it to reach the limit of the 
test rig (about 300% extension) was taken as the time 
to failure. The long time creep rupture tests were 
necessary in order to confirm the lower stress limit 
predicted by equation (4). All applied stress was calculated 
by dividing the load by the original cross sectional area. 
The applied stress ranges from 10.06 to 24.06 MPa. 

Material and sample preparation 
Polypropylene (PP) was used. This material was 

supplied by Idemitsu, Japan, code labelled Idemitsu 
PPJ-452H. It came in white pellet form with a melt flow 
index of 3.0g/10min (at 230°C with a load of 216kg). 
The PP was injection moulded in a simple laboratory size 
injection moulder (Unimoulder, UK) having a ram 
diameter of 25mm and 30g per shoot, to a shape 
conforming to ASTM D638, Type I. Edge gating with a 
fan gate configuration was used. The injection pressure 
was set at 1.03 MPa and the injection temperature at 
180°C. The single cavity mould was cooled by running 
water at 27°C. The injected PP specimen was left in the 
mould for 45 s before it was taken out. The average 
cooling rate was 3°C/s. 

Before creep rupture testing, the PP specimens were 
machined to ASTM D638, Type II. This was done to 
reduce the weight that was required for creep rupture 
testing because the cross-sectional area at the gauge 
length of the Type II configuration is much smaller than 
Type I. All machining marks were removed by using a 
fine abrasive paper (grade 00). A total of 24 specimens 
were prepared for creep rupture testing. 

Computational aspects 
Because the model equation (4) involves non-linear 

parameter optimization involving many different trials 
and iterations, all computations were carried out on an 
IBM host computer (IBM 3801) with SAS NLIN as the 
software package for non-linear parameters optimization. 

In order to use the SAS NLIN program, the PROC 
NLIN in SAS has to be invoked. To invoke this routine, 
the following statements were required: 

PROC NLIN options 
PARAMETERS (PARMS) parameters = values...; 
BOUNDS expression ...; 

other programming statements; 
MODEL dependent = expression; 
DER parameter=expression; 
OUTPUT out= SASdataset keyword =variable; 

Briefly, the PROC NLIN options determine the data 
set to be used, the method for the iteration and other 
values to control the iteration. The PARAMETERS 
statement identifies the parameters to be estimated and 
their initial estimates. If a range is given for the 
parameters, a grid search is performed such that the 
combination of the parameters with the lowest error sum 
of squares (ESSQ) is chosen as the initial estimates. This 
is important as it reduces computing time when using a 
trial-and-error method to estimate the starting initial 
values. The BOUNDS expression retains the parameter 
estimates within specified bounds. This expression is 
important in order to give parameter estimations that 
are meaningful. The MODEL statement defines the 
prediction equation by declaring the dependent variables 
and defining an expression that evaluates the predicted 
values. The DER statements represent the partial deriv- 
atives of the MODEL statement with respect to the 
parameters. This is required for the Marquardt method. 
If these statements are missing, SAS NLIN will use the 
DUD 11 method to solve the problem. The OUTPUT 
statement specifies an output data set to contain statistics 
calculated for each observation. 

RESULTS AND DISCUSSIONS 

Computational aspects 
A sample of the SAS NLIN program is shown in 

Appendix B using polypropylene creep rupture test data. 
The program uses Y5 to denote In tr, and X5 to denote 
the applied stress. 'If....Else Do;' statements were used 
to ensure that the program does not run into problems 
due to arithmetic division by zero or choosing non- 
meaningful negative variables during the iterative pro- 
cess. The importance of the BOUNDS expression (3rd 
paragraph after the INPUT data set in Appendix B) must 
be emphasized. Table 1 shows the results if no upper 
bound was placed on SX. It can be seen that the values 
of the ESSQ keep on improving even until SX = 5 x 
1014 MPa, a value of no practical meaning. An estimate 
of the upper bound for SX can be taken to be 1 or 2 MPa 
above that of the instantaneous (1 s) fracture stress 
measured at the intersection of the extrapolated linear 
regressed line to the X-axis representing In t r = 0, that is, 
the stress that produces a 1 s rupture time (Figure 2). 
The lower bound for SX is usually set between 5 to 
10MPa below the upper bound. This is to take into 
account that short time fracture stress measured experi- 
mentally is not accurate because rapid loading at high 
stresses may give rise to non-uniform temperature 
distribution along the gauge length of the specimen. The 

Table 1 Effect of having no upper bound on SX in parameters 
optimization of equation (6) 

SX SN B C 
(MPa) (MPa) (1/MPa) (MPa/s) ESSQ 

24 10 0.54 8.90E-7 19.43 
25 10 0.56 7.64E-7 18.48 
30 10 0.70 3.45E-7 13.32 
35 10 0.73 3.26E-7 13.24 
40 10 0.76 2.96E-7 12.72 
45 10 0.78 2.87E-7 12.33 
50 10 0.80 2.76E-7 12.13 

5 E+ 14 10 0.83 3.09E-7 7.44 
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upper and lower bounds for the other parameters (SN, 
B and C) are difficult to establish, and from experience, 
it is sufficient just to have a bound statement requiring 
these parameters to be greater than zero. 

Convergence can be reasonably expected only with 
fully identified parameters, adequate data, proper bound 
statements, and good initial starting values sufficiently 
close to the solution estimates. Jonathan Bard 12 writes: 
'The reader should realize that the state of the art of 
non-linear optimization is such that one cannot as yet 
write a computer program that will produce the correct 
answer to every parameter estimation problem in a single 
computer run. All too often, the first run produces 
unacceptable results. By studying these results one can 
perhaps obtain better starting guesses'. This quotation 
underscores the importance of getting reasonable initial 
estimates. The SAS NLIN program allows the user to 
specify a range for each parameter to be estimated and 
also the step change required within the range for 
performing the grid search for the initial estimates. Small 
step change is avoided since the grid search can take a 
long time. This provision of a grid search has been found 
to be very useful if no reasonable initial estimates are 
known for the first trial values. 

The above non-linear optimization procedure is also 
sensitive to the type of model equation used in the 
software routine. It has been found that equation (4) 
when used as it stands runs into computational problems 
related to exponential overflow especially in the estimate 
for the residuals which is related to the error sum of 
squares obtained from the difference of the experimental 
values and the predicted values. To avoid such problems 
equation (4) was written as 

In tr=ln {[1/CB)] In rtanh (Ba.p/2)/tanh (BH/2)]} (6) 

This equation (6) was used throughout the creep 
rupture time modelling and has been found to be very 
successful for other creep rupture data of other polymers 
(to be published later). 

Significance of the lower stress limit 
Figure 3 shows a plot of In(time to rupture in seconds) 

versus applied stress using all the creep rupture data. All 
the specimens show extensive cold drawing before 
ultimate failure. The continuous curve line is the fit 
predicted by equation (6). The actual experimental data 
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are in triangles. It can be seen that the fit by equation 
(6), with the proper bound statements as shown in 
Appendix B, is a good one. Equation (6) predicted 
SX = 30 MPa, SN = 10 MPa, B =0.65 MPa-  1 and C = 
5.70 x 10- 7 (MPa/s) with ESSQ = 8.78. A point to note 
is that at a stress of 10.06 MPa, no rupture was observed 
even after 3 years of creep rupture testing (indicated by an 
arrow head in Figure 3). It is believed that SN = 10 MPa 
is a reasonable lower stress limit for polypropylene. 
However, in order to substantiate this point creep rupture 
data of polypropylene (homo and copolymer) from 
Gotham 15, were analysed using equation (6). These 
polypropylene samples were injection moulded and creep 
rupture tested also at 20°C. Their creep rupture data 
were numerically obtained by using a digital plotter and 
admittedly, some errors were therefore inherent but 
considered to be small because of the log function used 
for the time to rupture. Their results in term of In(time 
to rupture) versus applied stress are shown in Figures 4 
and 5. Table 2 shows their computed results. Although 
there is no indication from the supplier for the poly- 
propylene (Idemitsu PPJ-452H) under study, whether it 
is a homo- or copolymer, it is interesting to note, 
regardless of this information, that the lower stress 
limit of 10 MPa seems to be a realistic value to adopt 
for polypropylene. Furtl~ermore the British Standards 
Institute (Code of practice 312) has designated a safe 
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Modelling the creep rupture time of PP copolymerl 5 using 
equation (6): SX = 24 MPa, SN = 10 MPa 

Table 2 Computed results for polypropylene (PP) 

SX SN B C 
Material (MPa) (MPa) (I/MPa) (MPa/s) ESSQ 

PPJ-452H 30 10 0.65 5.70E-7 8.78 
pp.copolymer 1 s 24 10 0.66 4.45E-6 0.92 
PP-homopolymer 15 30 10 0.54 4.47E-8 1.30 

design stress of 5 MPa for long term usage of poly- 
propylene, and assuming a reasonable safety factor of 2, 
it can be seen that the computed lower stress limit as 
predicted by equation (6) can be considered to be a good 
estimate for the lower stress limit before the application 
of a safety factor. It is noteworthy to mention that the 
fatigue endurance limit as reported by Riddell t6 for 
polypropylene was also about 10 MPa. This coincidence 
is important  as it suggests that the lower stress limit can 
also be taken to be the endurance limit under fatigue 
conditions. This is not illogical as one envisaged fatigue 
failure to be associated with crack initiation leading to 
crack propagation and ultimately to fracture, a process 
involving chain sliding and breaking, which according 
to the present creep rupture model is related to the chains 
having been stretched to such a state where the elastic 
stored energy reaches a critical value, R. However, it will 
be interesting to find out whether the lower stress limit 
does correspond to the endurance limit for other 
polymers, a topic for future work. 

Predicting SN using short term results 
In an effort to see whether short term creep rupture 

results can be used to predict SN, the creep rupture data 
for 26.4, 6.5, 1.09 and  0.23 days were used. Bound 
statements were imposed as mentioned earlier (see 
Appendix B). However much smaller steps were used 
in the grid search. The computed results are shown in 
Table 3. Here it can be seen that SN varies from about 
5 to 8 MPa.  It has to be mentioned that a long computing 
time was used for the extensive grid search for obtaining 
the results in Table 3. This was necessary in order to 
obtain the best initial estimate of the four parameters. 
Initially the above exercise was intended to investigate 
whether there is a trend towards the minimum duration 
of creep rupture testing to give a reasonable SN value 
close to 10 MPa. It is obvious from Table 3 that such a 

trend is not there. One would expect for longer time, the 
value of SN should be closer to 10 but it turned out t o  
be the reverse. However, it is clear from the values of 
SX, the magnitude is highly predictable. This is because 
the upper and lower bounds for SX had been imposed. 
One can therefore logically conclude that unless similar 
bounds can be imposed on the other parameters, using 
short term creep rupture results to predict SN is highly 
speculative. Nonetheless, Table 3 suggests that if such 
bounds can be determined, one only need creep rupture 
results over perhaps less than a day to give a reasonably 
close value of the true SN value. 

Resilience 

From equation (2), the value of the resilience (R) can 
be computed if one assumes a certain value for Ee for PP. 
Taking Ee to be that quoted in refs 17 and 18, as 41 GPa  
and using equation (2), R = SX2/E,, hence for PPJ-452H 
and PP-homopolymer 15 the R value is 0.02195 MJ/m a 
and for PP-copolymer the value is 0.01404 MJ/m 3. No 
published literature on P P  can be cited for com- 
parison. However the resilience of perspex 4, based on the 
Reiner-Weissenberg criterion, has been calculated to be 
0.084MJ/m 3. Previous values for a high density poly- 
ethylene 1 was in the order of 0.003 MJ/m a. According to 
Reiner and Weissenberg ~9, the resilience is independent 
of the strain rate and, hence, can be considered as a 
material property. This has been found true from the 
experimental results of Foux and Briiller 4 on the 
resilience of perspex and epoxy. 

C O N C L U S I O N  

Modelling the creep rupture time using a three element 
mechanical model in conjunction with the Reiner- 
Weissenberg energy failure criterion was found to apply 
for polypropylene. The non-linear relationship between 
log(time to rupture) and applied stress dictates that the 
parameters used in the model equation need to be 
optimized by non-linear regression analysis. The SAS 
NLIN regression analysis program using the Marquardt's 
method of convergence, was found to be most suitable. 
Meaningful estimates of the parameters, which have been 
reduced to four from five, as in a previous publication 1, 
can best be made if proper bounds are imposed on them. 
For  engineering design purposes, the lower stress limit 
is the most important and this limit was found to be 
equal to 10 MPa regardless of whether the polymer is a 
homopolymer or copolymer. This lower stress limit 
cannot be predicted by using short term creep rupture 
test results unless reasonable bounds were imposed on 
all the parameters. The upper stress limit was found to be 
dependent on the type of polymer. For  the homopolymer 
it was 30 MPa  and the copolymer it was 24 MPa. 

The ratio of the elastic to anelastic modulus is only 
dependent on the upper and lower stress limits. The 

Table 3 Parameters estimation of PPJ-452H using short term results 

Time SX SN B C 
(days) (MPa) (MPa)  (1/MPa) (MPa/s) ESSQ 

26.4 30 5.07 0.71 1.56E-9 6.21 
6.5 30 4.10 0.69 1.28E-9 4.33 

1.09 30 8.01 0.60 4.33E-7 2.73 
0.23 30 8.03 0.57 6.60E-7 2.52 
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creep rupture model can also be used to predict 
reasonable values for the resilience of PP. The resilience 
for PP-homopolymer was 0.02195 MJ/m a and for. PP- 
copolymer was 0.01404 MJ/m 3. 
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APPENDIX A 

Creep rupture model 
The mathematical formulation of the Reiner-Weissen- 

berg energy criterion of failure can be described, for the 
model shown in Fioure 1, as: 

fo flap dee + are d~a = R (7) 
J0 

where e* =elastic strain at rupture; e* = anelastic strain 
at rupture; tap = applied stress; are = recovery stress and 
R = critical sum of the elastic stored energy (often referred 
to as the resilience of the material which is a material 
property related to the intrinsic free energy that can be 
stored elastically in the volume element of the material). 

The first integral in equation (7) relates to the elastic 
stored energy for the spring element E= and the second 
integral relates to the elastic stored energy for the spring 
E a • 

Under creep conditions, the applied stress is constant. 
Hence, by using e* = flap/Ee, the first integral can be 
evaluated as a~p/Ee. For the second integral, by using 
the relationship trre-----eaE e where e a and E a are the 
anelastic strain and modulus respectively, it can be 
evaluated as (e*)2Ea/2. 

Equation (7) can be rearranged to make e* as the 
dependent variable as 

Ca* = [(R - fl2p/Ee)(E/Ea) ] 1/2 (8) 
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Now, the anelastic strain rate (ca) can be expressed in 
terms of the effective stress (fl=f) using the hyperbolic 
sinh function, which is used to describe an Eyring's fluid, 
a s  

~a = K sinh (Baef) (9) 

where K is a function of the activation energy which is 
a constant at fixed temperature, and B is a function of 
the activation volume (V) and is equal to V/2kT (k and 
T represent the Boltzmann's constant and the absolute 
temperature, respectively). 

However, the anelastic strain rate can also be related 
to the recovery stress and the anelastic modulus as 

~a = dre/Ea (10) 

The applied stress is the sum of the effective and 
recovery stress, i.e. flap = fire + fief" The time derivative of 
this equation can be written as 

O'ap = #re  "~ 6e l  ( 1 1 )  

For creep conditions, #ap = 0, since the applied stress is 
constant. Hence from equation (11), #re = -#=f- Putting 
this in equation (10) and equating the resultant formula 
to equation (9), the following expression can be derived: 

f ~adoef/sinh (Baef)=- f l  EaK dt (12) 
ap 

where t=t ime.  The limits in the left hand integral of 
equation (12) are derived from the fact that at time equal 
to zero, the applied stress is acting only on the Eyring 
dashpot because the spring is not extended at this time. 

After evaluation of the integrals and rearrangement to 
make tref the dependent variable, equation (12) becomes 

tree = ~ tanh-  1 [tanh (Bflap/2) exp (-- EaBKt)] (13) 

Because fire can be expressed as (trap- tree ), the anelastic 
strain ea can be written as 

ea = (flap - -  f l e f ) /Ea  (14) 

Putting equation (13) in equation (14) gives 

/~a .m (O'ap/Ea)  

-(2/BEa) tanh-1 [tanh (Bflap/2) exp (--EaBKt)] 

(15) 

Now equation (15) can be used to eliminate e* in 
equation (8) by noting that when t = tr, the rupture time, 
~a ~--~ ~a*. 

Hence by making tr the dependent variable, 

tr= (1/EaBK) In [tanh (Bflap/2)/tanh (BH/2)] (16) 

where H = flap- [2E,(R - fl2p/Ee) ] 1/2. 
This then describes the creep rupture modelling 

equation relating the rupture time, t r, to the applied 
stress, flap, using the parameters Ee, Ea, B, R and K. 

APPENDIX B 

SAS NLIN subroutine for creep rupture modelling 

THIS PROGRAM IS FOR CREEP RUPTURE 
M O D E L I N G  USING THE SAS NLIN 

(NON-LINEAR REGRESSION) SUBROUTINE 
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CMS FI  01 D I S K  T E O H S H  1507S01 (RECFM VBS 
LRECL 364 B L O C K  368; * G O P T I O N  OVP 
DEVICE = CAL 1051 U N I T  = 01 HSIZE = 20 
VSIZE =20;  G O P T I O N  D E V I C E =  IBM32793; 

DATA A; 

I N P U T  Y5 X5; 
CARDS; 18.35 10.06 

15.62 11.67 
14.64 12.03 
13.88 13.01 
13.24 12.91 
12.74 14.12 
12.55 14.03 
12.02 13.08 
11.45 14.44 
11.36 15.19 
10.58 16.00 
10.56 15.93 
10.44 15.88 
9.88 17.24 
9.64 18.36 
8.58 17.51 
8.60 18.00 
8.05 19.68 
7.80 19.68 
6.72 20.00 
6.49 21.01 
5.99 21.98 
5.13 23.36 
4.50 24.06 

P R O C  N L I N  DATA = A 
M E T H O D  = M A R Q U A R D T  BEST = 10 

E F O R M A T  MAXITER = 2000; 

PARMS SX=24  T O 3 0 B Y 1  S N = 0  T O 1 0  BY1 
B=0 .01  TO 1 BY0.1  C = I E - 9 T O  1 E - 6 B Y 1 E - 8 ;  

B O U N D S  2 4 < S X < 3 0 ,  S N > 0 ,  B > 0 ,  C > 0 ;  

SO = SX**2-X5**2; 
S1 = SX**2-SN**2; 

IF  S1 < = 0  T H E N  R E T U R N ;  

ELSE DO;  
Z = SO/S 1; 

IF Z <  = 0  T H E N  R E T U R N ;  
ELSE DO;  

Y = SQRT(Z);  
H = X5-SN*Y; 

IF  H <  = 0  T H E N  RETURN;  
ELSE D O ;  

X = B 'X5/2;  
W = B * H / 2 ;  
V = TANH(X);  
U = TANH(W);  
S = LOG(V/U);  

IF S <  = 0  T H E N  RETURN;  
ELSE DO;  

T = SINH(X*2); 
Q = SINH(W*2);  
A=S/(C*B); 

IF A < = I THEN RETURN; 
ELSE DO; 

M O D E L  Y5 = LOG(A);  

DER.SX = B*SX*SN*Y*(1/S0-1/S1)/(S*Q); 
DER.SN = Y*(1-SN**2)*B/(S*Q); 
DER.B = (-1)/B + (XS/T-H/Q)/S; 
DER.C = (-1)/C; 

END;  
END;  
END;  
E N D ;  
END;  

O U T P U T  O U T  = N P = Y T H E O  R = YRESID 
P A R M S = S X  SN B C E S S = E S S Q ;  

T I T L E  P O L Y P R O P Y L E N E  ( I N J E C T I O N  
M O L D E D ) ;  

P R O C  P R I N T ;  

P R O C  P L O T  D A T A = N ;  

P L O T  Y5*X5 = "O" YTHEO*X5 = '* ' /OVERLAY 

VAXIS = 0 TO 20 BY 1 

H A X I S = 0  T O  90 BY 5; 
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